

Harnessing the potential: renewable energy in the Swansea Bay City Region

Institute of Welsh Affairs

30th April 2018 | National Waterfront Museum| Swansea

Harnessing the potential: renewable energy in the Swansea Bay City Region

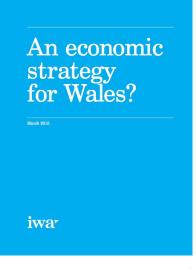
Welcome and introduction to the IWA: Auriol Miller, Director, IWA

30th April 2018 | National Waterfront Museum| Swansea

Introduction to the Re-energising Wales Project

Shea Buckland-Jones, Institute of Welsh Affairs

30th April 2018 | National Waterfront Museum| Swansea



An economic strategy for Wales?

@IWA Wales

- March 2015
- Renewable energy has an important role to play in an ambitious economic strategy for Wales

Re-energising Wales

- Vision: 'Meeting energy demand in Wales through 100% renewable energy by 2035'
- 3 year project (2016-2019)
- Project steering group
- 6 work packages
- Short papers

Work Packages

- 1. Energy demand
- 2. Swansea Bay City Region 'Future Energy Vision' case study
- 3. Economic impacts
- 4. Social and community issues/ownership
- 5. Regulatory and political levers
- 6. Final report and action plan

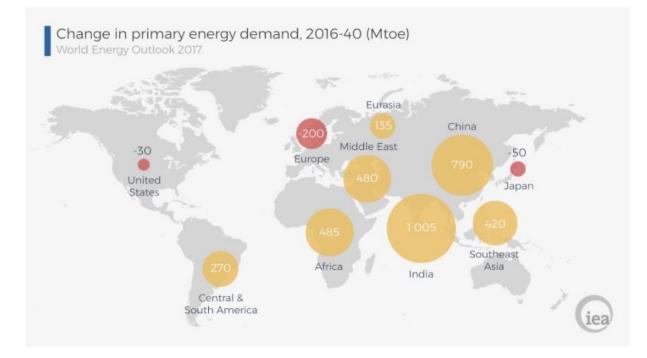
Contact Details

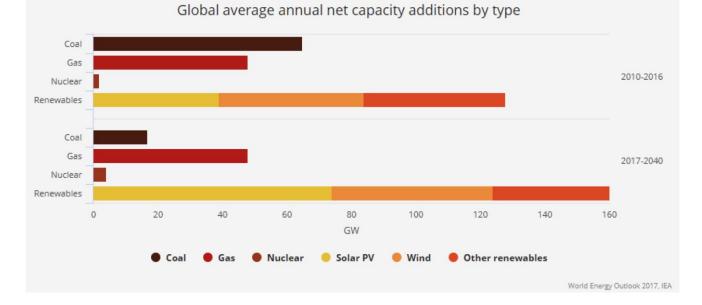
shea@iwa.org.uk | www.iwa.wales

Introduction to the Swansea Bay City Region exemplar case study

Professor Stuart Irvine

Swansea University

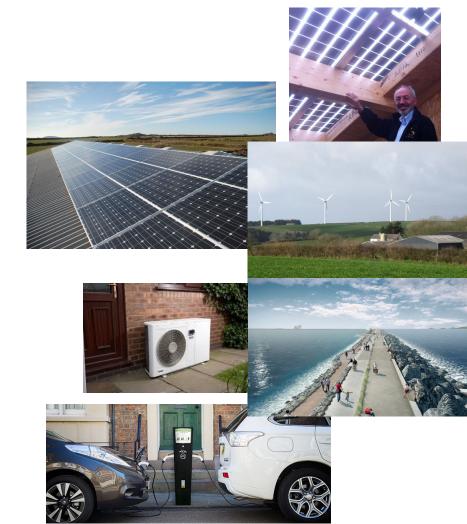



Cronfa Datblygu Rhanbarthol Ewrop European Regional Development Fund

With increasing global demand for energy we have a tougher challenge to decarbonise

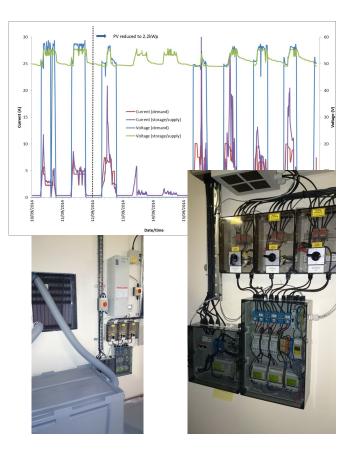
A global economy growing at an average rate of 3.4% per year, a population that expands from 7.4 billion today to more than 9 billion in 2040, and a process of urbanisation that adds a city the size of Shanghai to the world's urban population every four months are key forces that underpin our projections.

IEA World Energy Outlook 2017 – renewable energy predictions for 2040


"Rapid deployment of solar photovoltaics (PV), led by China and India, helps solar become the largest source of low-carbon capacity by 2040, by which time the share of all renewables in total power generation reaches 40%."

SBCR study – bottom up rather than top down!

- The WP2 (RE generation) steering group focussed on one region in Wales to test methodology for total energy demand and supply scenario for 2035.
- Each region of Wales has a different energy mix and each should aspire to achieving <50 gCO_{2e}/kWh
- The scenario for the methodology was "ambitious but realistic".
- Innovation will play an important part in achieving the 2035 goal and the solutions could help other regional plans.
- Will it be possible to generate the equivalent of 100% of SBCRs net electricity demand by 2035 by optimising the generation of RE?


An ambitious and inclusive study

- Electricity
 - Solar PV
 - Onshore and offshore wind
 - Tidal Lagoon
 - Marine energy wave and tidal
 - Energy from Waste
 - Hydropower
- Heat
 - Domestic consumers
 - Commercial buildings and processes (including public sector)
 - Industrial buildings and process
- Transport
 - Private vehicle transport cars
 - Commercial vehicles and light goods vehicles
 - Public road transport including buses

How will the system be balanced?

- Smart demand
- Local energy storage
- Utility scale storage
- Import/ export of energy from region – stress to the connectors?
- Consider different diurnal scenarios considering maximum demand and maximum supply

The IWA WP2 study by Regen takes a fresh look at a fully integrated, low-carbon energy system

Findings from the Swansea Bay City Region case study

Johnny Gowdy, Director, Regen

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

#iwaenergy

Re-energising Wales Project

Swansea Bay City Region : A renewable energy future

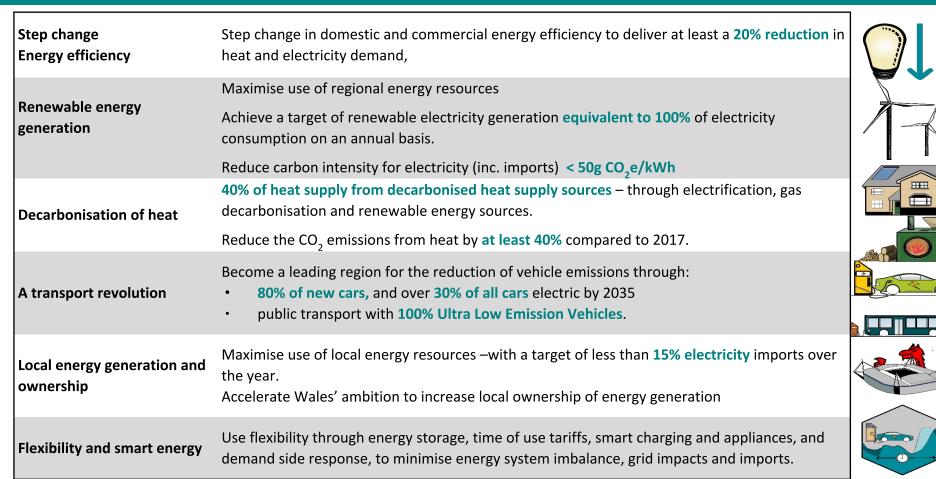
Energy system vision for 2035

Re-energising Wales

regen,

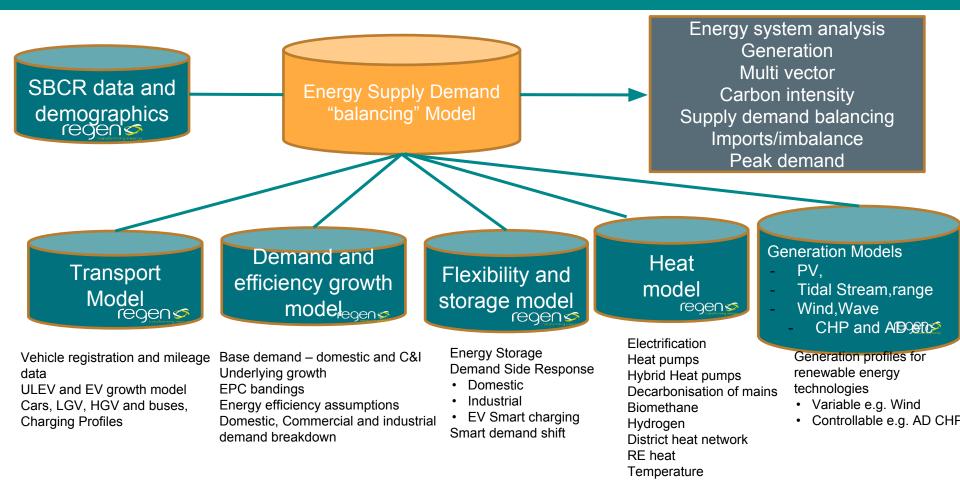
....whole energy system vision and strategy looking out to 2035 for the Swansea Bay City Region

Phase 1 – Scoping and vision report (November 2017)


- Current energy system analysis
- Regional energy resource and opportunity assessment
- Future growth, generation and demand assumptions
- Future energy vision goals and objectives

Phase 2 – SBCR : A renewable energy future (Today's launch)

- Energy system modelling and scenario analysis
- Base case to achieve vision decarbonisation targets and objectives
- Electricity, heat and transport, and energy efficiency



SBCR Future Energy Vision 2035

Integrated energy system model

An energy system for 2035

Case study highlights

SBCR Future Energy Vision - Efficiency

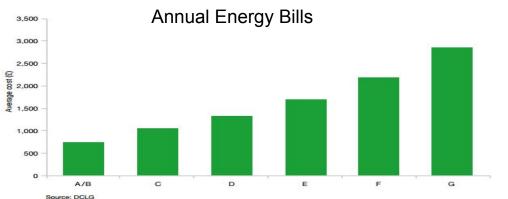
EPC Rating Band	A-C rating	D-G rating
Current SBCR bandings based on EPCs lodged 2008-17	28%	72%
Example of step change needed in EPC bandings to achieve 20% energy efficiency savings targets	Step (Change
Energy saving programme A "Across the board"	62%	38%
Energy saving programme B "more focus on the worst"	58%	42%
Energy saving programme C "more focus on the best"	59%	41%

Challenge

EPC ratings between 2008 and 2017 suggests that circa 72% of SBCR properties are banded D-G

To achieve a 20% saving would require this to flipped such that circa 60% of properties are banded A-C

Depending on the approach this would mean significant efficiency improvements to around 200,000 properties or 60% of households.


Step change in energy efficiency to achieve a 20% energy demand reduction

EPC Rating Band	А	В	С	D	E	F	G
Current SBCR bandings based on EPCs							
lodged 2008-17	0.2%	7.1%	21.2%	37.1%	22.5%	8.7%	3.3%

Example of step change needed in EPC bandings to achieve 20% energy efficiency savings targets

							1
Energy saving programme A "Across the board"	5%	21%	36%	21%	13%	4%	1%
Energy saving programme B "more focus on the worst"							
	4%	15%	39%	31%	11%	0%	0%
Energy saving programme C "more focus on the best"							
	8%	24%	26%	22%	13%	5%	2%

SBCR Future Energy Vision - Efficiency

Average annual cost of energy in homes by energy efficiency rating, 2014. Source:

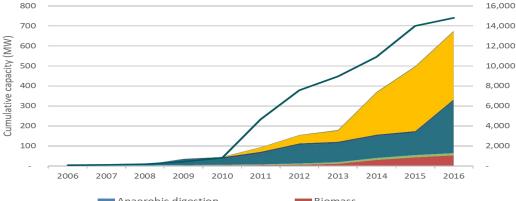
BEIS, Clean Growth Strategy (2017)

Energy saving EPC profile	SBCR Energy Saving MWh 20%	SBCR total consumed energy cost saving per year £millions	Avg saving per household improved	households improved (approx)
20% energy saving profile A "Across the board"	788,597	£76	£378	202,175
20% energy saving profile B "more focus on the worst"	788,597	£84	£420	200.641
20% energy saving profile C "more focus on the best"	788,597	£72	£354	204,808

Opportunity

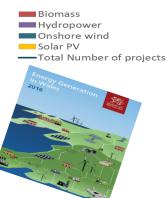
Comprehensive measures to shift properties to bands A-C could save over 780k MWh of energy and energy costs of £70-85 million per annum.

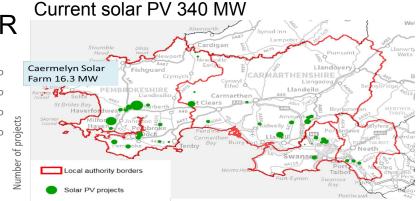
Potential household energy bill savings of £350-420* per year

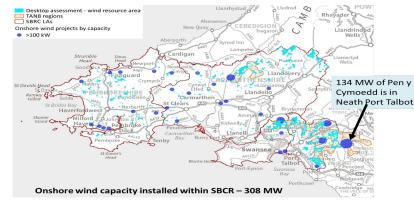

Carbon Saving 100k mT CO₂e

*cost saving calculations based on estimated costs per EPC banding taken from BEIS Clean Growth Plan 2017

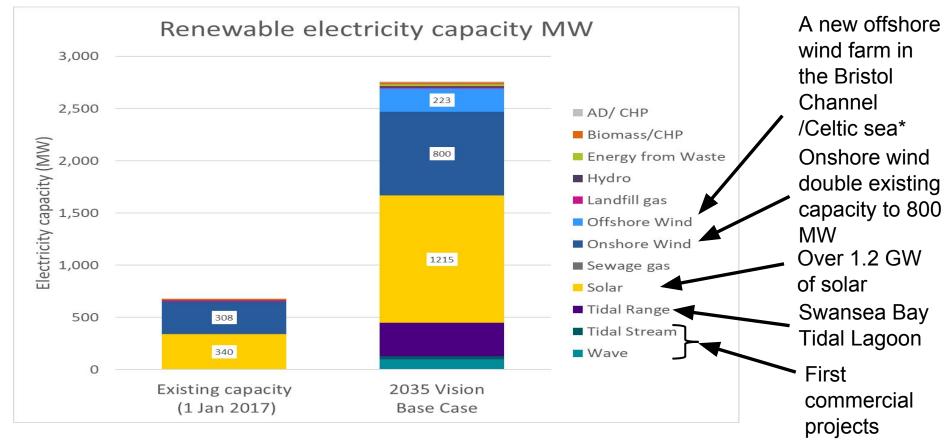
SBCR Future Energy Vision - Electricity


Current renewable energy mix in the SBCR

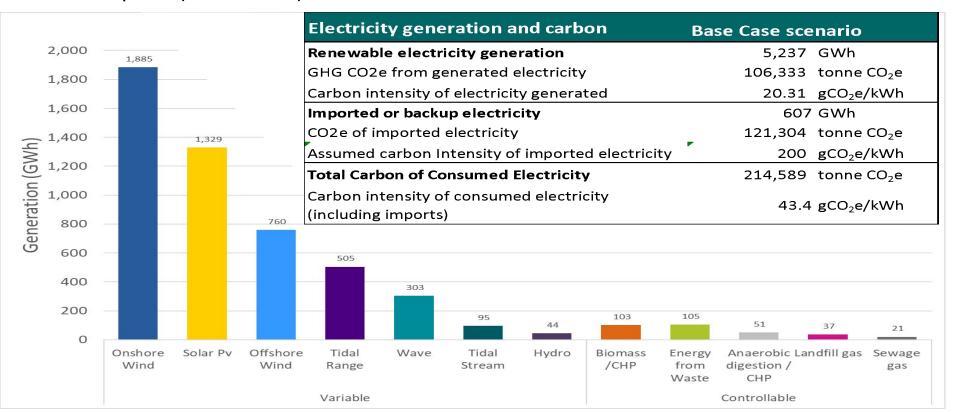

Renewable energy capacity in SBCR 2017


Anaerobic digestion Heat pump Landfill gas Sewage gas Solar thermal

Source Regen : Energy Generation in Wales data from 1st Jan 2017



Current wind farms 360 MW


SBCR Future Energy Vision - Electricity

*Offshore wind capacity would be shared with other Welsh and South West regions

5.2 TWh annual renewable electricity generation in SBCR – equivalent to **4.9 TWh** annual consumption (after losses)

SBCR Future Energy Vision - Heat

Current carbon intensity around $178g CO_2e/kWh$

Anaerobic digestion Biomass Diesel Gas Oil = LPG Heat pump Sewage gas Solar thermal

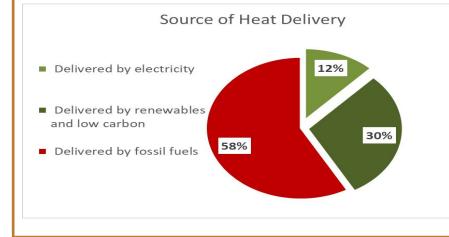
Current and projected demand for heat GWh	Domestic	Commercial and Industrial	Total heat demand
Demand from Mains Gas	2,999	1,245	4,244
Non mains gas heat demand	548	117	666
Total Current Demand	3,547	1,362	4,909
New Domestic Build	256		256
Demand Growth - economic and change of use	190	-122	68
Energy efficiency savings	-761	-272	-1,033
Efficiency saving %	-20%	-20%	
Projected heat demand in 2035	3,233	968	4,201

Meeting the heat challenge - Heat

2035 heat energy system to deliver 4.2 TWh heat per annum

Heat decarbonisation strategies		Mains network		Electrifi			Othe r
Strategy	Approach	gas heat d hea		d heat	t networ		fuels
1. Energy efficiency	20% demand reduction	Biomethane, 10% of r	mains gas energy		Standalone Systems		t Pump
	Deployment of heat pump and hybrid heat		Hydrogen, 10% of mains gas energy			sys	stems
2. Electrification of heat	ctrification of heat pump system technology and other technologies		Natural (fossil) Gas, 80% of mains gas energy			Hybrid	d,7%
3. Gas decarbonisation	Through injection into the mains network of		twork continu irca 65% of a		Biomethane , 4%		
5. Gas decarbonisation	"green gases" such as biomethane and hydrogen		d but at a rec			ASHP	, 6%
4. Renewable heat	Direct delivery of renewable heat energy		footprint thr	•	Oil, 3% LPG,	3% GSHP	, 2%
4. Renewable heat from sources such as biogas and biomass		injection	of biometha	ne and	District Heat	Networks	
5. District heat networks (DHNs)	Delivery of heat through district heat networks which could then be decarbonised	Mains Gas	hydrogen , 61%		Mains Gas , 4%	Biomethane , 4%	, Biomass , 3%

Carbon intensity reduced to 133 gCO₂e kWh



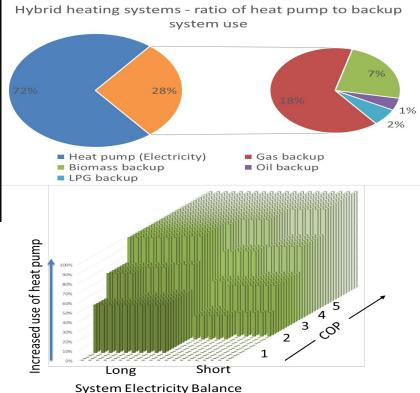
Meeting the 2035 energy system vision for heat

efficiency

Over 40% of heat delivered from decarbonised sources

Over 40% of carbon saving compared to current emissions

Heat Carbon Savings					
Carbon	CO2e tonne	Carbon Intensity			
	Tonne	gCO2e/kWh			
Current emissions	940,768	178			
2035 Energy System	557,341	133			
Carbon saving	383,427	45			
Percentage saving	41%				
Reduced carbon intensity plus energy		1% carbon mission reduction			


SBCR Future Energy Vision - Heat Heat pumps to deliver 12% of heat demand

Heat Supply	Percentage of properties with	Of Which			
Heat pumps	a heat pump	ASHP	GSHP	Hybrid	No Properties
On Gas grid	8%	20%	5%	75%	19,771
Off Gas Grid	25%	60%	15%	25%	19,426
New development homes	40%	55%	25%	20%	9,384
Commercial and Industrial	10%	20%	5%	75%	2,241
Total properties		21,219	6,361	23,242	50,822

Challenge and opportunity

50,000 of properties with a heat pump represents around 14% of properties in the SBCR, to deliver 12% of total heat demand.

Currently heat pumps are installed in less than 0.4% of properties.

With a well sized hybrid heat pump system, simulation shows circa 70% of annual heat demand is met by the heat pump

SBCR Future Energy Vision - Transport Switch to electric and Ultra Low Emission Vehicles

Vehicle Data from DfT	Car	LGV	HGV	Buses
Total vehicles (SBCR 2016)	356,958	52,172	54,56	2,265
Historic growth rate (Wales 1990-2016)	1.02	1.02	1.05	0.99
Electric vehicles (SBCR 2016)	594	123	0	0

Local Authority	Road transport petroleum demand
Local Authonity	(GWh)
Carmarthenshire	1,502
Neath Port Talbot	1,013
Pembrokeshire	794
Swansea	1,306

Cars 80% of new cars ULEV by 2035 Majority of these are electric 34% of all cars electric by 2035

Light goods vehicles LGV 72% of new LGV are ULEV by 2035

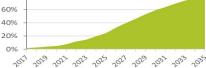
Buses / public transport

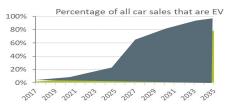
100% of new buses are ULEV by 2021 100% of all buses are ULEV by 2035

HGV's

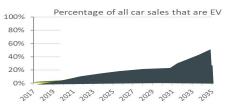
30% of new HGV's are ULEV by 2035

Vision based on a 2040 ban on sales of all diesel and petrol vehicles. Is this ambitious enough given calls to bring this forward to 2035 or 2030?


Transport EV Growth Scenarios The big unknown

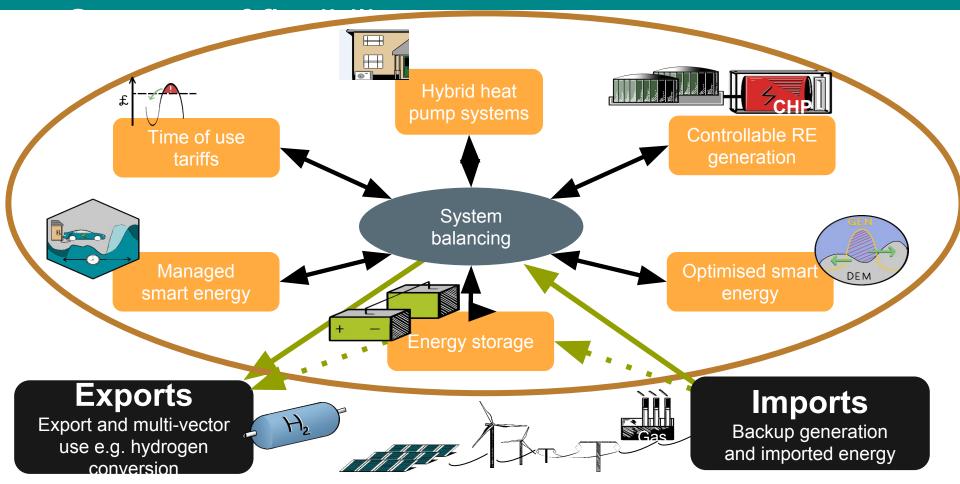


New report published : Harnessing the electric vehicle revolution


Exponential growth Percentage of all car sales that are EV 80%

Explosive growth

Stagnated growth

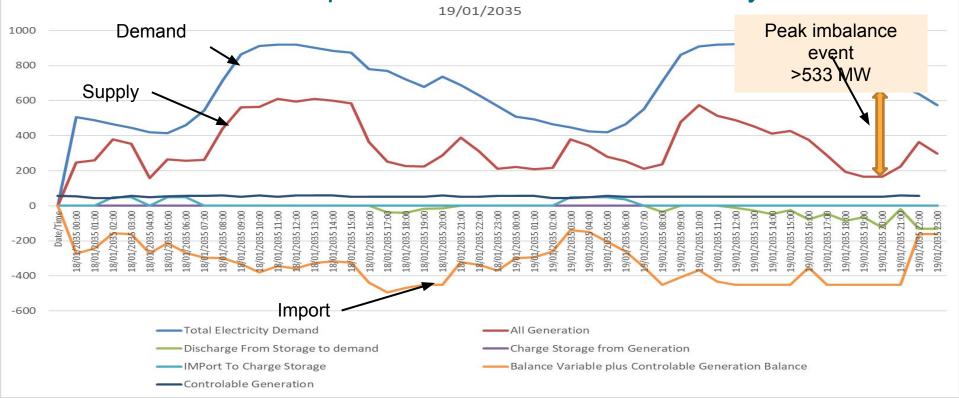

The most common growth model. From a slow start the EV market grows exponentially throughout the next decade reaching a point where 80% of new car sales are EV's in the 2030's.

The EV market reaches a tipping point where an overwhelming consumer demand for EV's (and a shift from diesel/petrol) leads to a rapid and disruptive market expansion.

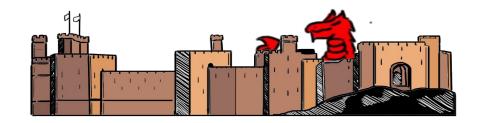
Initial growth is curtailed as the market fails to develop. EV's remain a relatively small part of the overall car market until the mid 2030's.

Energy System Electricity Balancing

Energy System Electricity Balancing



Energy	System	Balancing
	Scoreca	nd

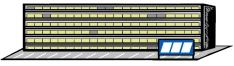

		N/N/h
Electricity import and export required - MWh	606,521	MWh
Imports as % of Demand Consumption	12.3%	
Export as % of generation (inc losses)	11.6%	
Peak import or backup electricity		MW
Max import/backup power required MW	450	
Max power as % peak demand	48%	
Number import/backup peaks >350 MW occurrences (1 hour periods) in one year	123	Hours p.a.

19th January 2035 – simulated stress event regense

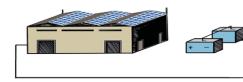
Simulated peak imbalance – 19th January 2035

Big challenges and big opportunities: for Wales and SBCR

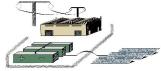
SBCR Future Energy Vision 2035 Big challenges and opportunities



	SBCR Energy Vision 2035 Big challenges and big opportunities	Energy prize (MWh)	Carbon Saving p.a. mTCO 2e	Prime opprtunity for Wales
Energy efficiency	Shift circa 30% of properties from EPC bands D-G to bands A-C, and deploy energy efficiency measures across circa 200k (60%) SBCR properties	788,597	102,863	
Electricity				
Electricity generation	Is it possible to more than double on-shore wind capacity to 800 MW?	1,159,681	218,020	
	Will the Swansea Bay Tidal Lagoon be built?	504,854	94,913	
	Will a new offshore wind farm be built off the south Wales coast?	759,548	142,795	2.3.1
	Can tidal stream and wave energy reach maturity?	398,275	74,876	
Heat				
Heat	Is it realistic to deploy over 50,000 heat pumps (circa 14% of properties)	508,007	84,642	
	Could 10% of buildings be served by a district heat network	468,299	83,518	
	Will sufficient biomethane and/or hydrogen be available - do we have the resources and will they be commercially viable?	623,940	111,320	V S
Electricity				
Transport	Will drivers embrace the EV revolution, will we see exponential growth such that a third cars in the SBCR are EV's by 2035?	398,674	324,282	
		1		
Flexibility	Is there a business model that would justify investment in over 350 MW and			
	1500 MWh of energy storage capacity?			
	Will business and domestic consumers embrace smart systems and flexibility - Time of Use Tariffs, optimised and managed smart appliances			
	including heating and EV charging, demand side response -to enable 10-15%			
	of demand to be deferred during peak imbalance periods?			1.2.1


1) Net zero carbon buildings as power

Station proved energy efficiency 60% of households


50,000 properties with a heat pump (14% of properties)

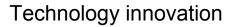
75,000 properties with a rooftop and building integrated PV Totalling 375 MW capacity

350 MW of storage many located alongside sources of demand

Homes (and commercial buildings become power stations with energy storage)

2) Harnessing offshore wind and marine

UK needs at least a further 20 GW of offshore energy by 2035



Welsh marine energy and offshore wind resource

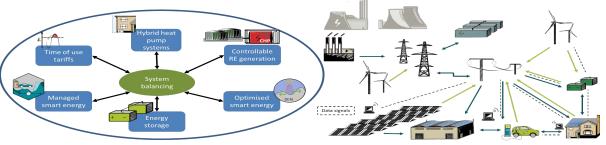
Port and supply chain capability

Wales and SBCR become a centre for offshore energy technology development and deployment

SBCR energy vision requires 1.6 TWh of biomethane (or bio SNG from biomass)

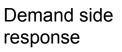
Potential sources of biomethane and bioSNG energy			
Waste feedstocks	Residual waste Wood waste Food waste Sewage sludge		
Non-waste feedstocks	Decidcated energy crops Dry agricultural residues Forestry residues Small round wood Arboricultural arisings Sawmill co-products Short rotation forestry Wet manure Macro-algae		

Technology innovation


Commercialisation of bioenergy feedstocks will - create opportunities for Welsh farmers and forestry.

4) Smart and flexible local energy

Maximising the use of local energy will support new business models



Welsh ambition to increase local ownership....

Local supply balancing

Peer-to-peer, energy clubs and local generation tariffs Decarbonised, decentralised and Community energy democratised... > Local generation tariffs

- > Peer-to-peer trading
 - \succ Microgrids
 - Local energy markets

5) Leading the transport revolution

Cars

80% of new cars ULEV by 2035 34% of all cars electric by 2035 **Light goods vehicles LGV** 72% of new LGV are ULEV by 2035 **Buses /public transport** 100% of new buses are ULEV by 2021

100% of all buses are ULEV by 2035 HGV's

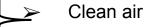
30% of new HGV's are ULEV by 2035

Plus

Public transport

Cycling and walking

Clean air zones



Integrated transport and clean air strategy putting SBCR and Wales at the forefront of the transport revolution:

- > Innovation
- New jobs

➤ Healthy people

Regen, Innovation Centre, Rennes Drive, Exeter, EX4 4RN T: 01392 494 399

THE ECONOMIC IMPACT OF ENERGY TRANSITION IN WALES

A RENEWABLE ENERGY SYSTEM FOR SWANSEA BAY CITY REGION

EMERGING FINDINGS

Calvin Jones Welsh Economy Research Unit

IWA SBCR 30-4-02018

To assess the indicative cost and economic impact of the Regen SBCR Energy System Vision.

What's actually doable... or at least been done so far?

- Outline estimate of gross cost & Welsh spend for electricity & refurb
- Economic impact 2021-35 on Wales & SBCR (Jobs, GVA)
- Discussion of wider issues local ownership, skills & supply chain...

What's not doable... or at least not been done so far?

- Cost other Vision elements grid upgrades, storage, vehicles...
- Any 'systematic' analysis crowding out, viability/investability etc

Ysgol Busnes Caerdydd

- Lever extensive prior Wales-level studies on energy generation & domestic refurb to estimate cost & economic impact of Energy System Estimate cost/economic impact per MW by relevant technology
- Rebase to 2018(ish) using UKGOV & other sources (e.g. CfD Auctions; press reports)
- Assess Swansea Bay-level 'economic capture' based on indirect data (employment demand by sector, local employment etc.)
- Synthesise prior reports to open discussion on wider issues driving impact.

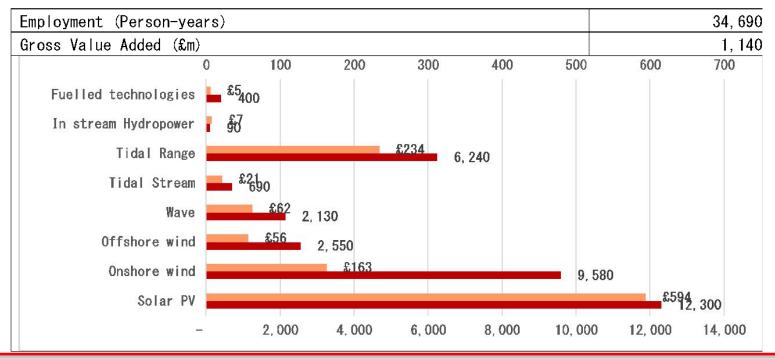
Ysgol Busnes Caerdydd

Key Sources

- Bere, J, Jones, C. and Jones, S. (2015) The Economic and Social Impact of Small and Community Hydro in Wales Report for Hydropower Stakeholder Group http://www.regenwales.org/upload/pdf/071015091201Impact%20of%20Small%20and%20Community%20Hydro%20in%20Wales.pdf
- Bryan, J., Evans, N., Jones, C., & Munday, M. (2017). Regional electricity generation and employment in UK regions. Regional Studies, 51(3), 414-425.
- Cardiff University and Regeneris Consulting (2013) Employment effects associated with regional electricity generation. Report for Office for Regulated Markets, Welsh Government, June. Available at <u>http://wales.gov.uk/docs/desh/publications/131219employment-and-regional-electricity-generation-en.pdf</u>
- <u>Community Energy Wales (2015) The Community Energy Sector in Wales: Facing the Challenges</u> <u>http://communityenergywales.org.uk/wp-content/uploads/CEW-Final-Report-April-2016.pdf</u>
- DECC (2012) <u>The Energy Efficiency Strategy: The Energy Efficiency Opportunity in the UK</u> <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/65602/6927-energy-efficiency-strategy--the-energy-efficiency.pdf</u>
- Regeneris Consulting, AMEC and Cardiff University (2015). Socio-economic impact of unconventional gas in Wales. Report for Welsh Government, Cathays Park, Cardiff. (not currently online)
- Regeneris and Cardiff University (2013) Economic opportunities for Wales from Onshore Wind Development, Report for RenewableUK, Cymru. January. <u>http://www.renewableuk.com/en/utilities/document-summary.cfm?docid=107A0752-6FD5-4776-9B4067941F0ADB16</u>
- Regeneris and Cardiff University (2013) Economic opportunities for Wales from marine renewables. Report for Welsh Government, May 2013. see http://wales.gov.uk/docs/desh/publications/130816economic-impact-of-developing-marine-energy-summary-en.pdf
- Stop Clmate Chaos Cymru (2011) Cutting Carbon: Creating Jobs <u>http://stopclimatechaoscymru.org/wp-content/uploads/2013/07/SCC+-+Cutting+Carbon+Report+final1.pdf</u>
- Tidal Lagoon Swansea Bay (2013) Turning Tide: the economic significance of the Tidal Lagoon Swansea Bay Report for Tidal Lagoon Swansea Bay http://tidallagoon.opendebate.co.uk/files/TidalLagoon/Cardiff Business School Report.pdf

Ysgol Busnes Caerdydd

Figure 3-1 Electricity	Generation I	nvestment: MW	and Investment	Cost
		Cost per MW	Investment	Estimated Wales
	MW	(£m)	cost (£m)	Spend (£m)
Solar PV	1, 215	1.5	1, 800. 6	821.3
Onshore wind	800	0. 7	584.9	207. 1
Offshore wind	223	2. 1	470. 7	102. 0
Wave	100	2.0	200. 2	68.8
Tidal Stream	30	2.4	72.6	20. 8
Tidal Range	320	4.1	1, 299. 2	515. 2
In stream Hydropower	13	4.8	62. 1	42. 5
Fuelled technologies (Biomass, AD,				
Energy recovery)	30	5.0	150.5	23. 6
All Technologies	2, 731	1.7	4, 641. 0	1801. 2
Notes: All £2018 or closest equivalent. Does not include operational costs.				

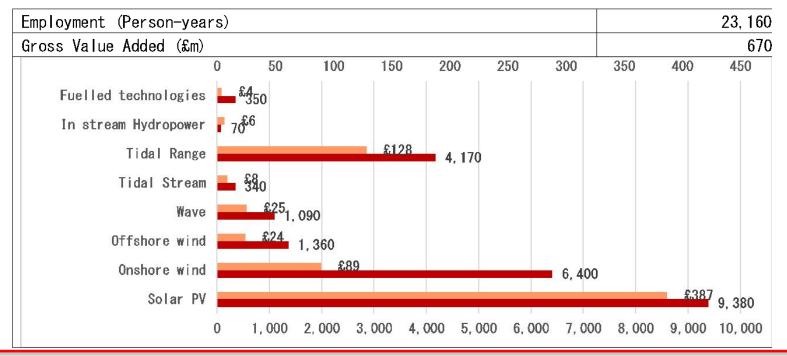

Note fuelled technologies (AD, energy recovery) have multiple value streams of which electricity is only one

Cardiff Business School Ysgol Busnes Caerdydd

Results - Generation Wales

Employment and GVA Impacts - Wales

The Public Value Business School | Yr Ysg


Yr Ysgol Busnes Gwerth Cyhoeddus

Ysgol Busnes Caerdydd

Results – Generation SBCR

Employment and GVA Impacts - Swansea Bay City Region

Cardiff Business School Ysgol Busnes Caerdydd

The Domestic Refurb

Figure 4-1 Domestic Refurbishment Investment Cost

Number of Households Covered	202, 175
Average Cost per Household	£5, 750
Total Investment Cost (£m)	1, 160
Total Welsh Spend (Direct) (£m)	850

Figure 4-2 The Economic Impact of Domestic Refurbishment- Wales

	Total	Per Annum
Employment (Person years)	33, 000	2, 200
GVA (£m)	517.7	34. 5

Figure 4-3 The Economic Impact of Domestic Refurbishment (SBCR)

	Total	Per Annum
Employment (Person Years)	24, 990	1, 670
GVA (£m)	340. 2	22. 7

Cardiff Business School Ysgol Busnes Caerdydd

The Domestic Refurb

Figure 4-1 Domestic Refurbishment Investment Cost

Number of Households Covered	202, 175
Average Cost per Household	£5, 750
Total Investment Cost (£m)	1, 160
Total Welsh Spend (Direct) (£m)	850

Figure 4-2 The Economic Impact of Domestic Refurbishment- Wales

	Total	Per Annum
Employment (Person years)	33, 000	2, 200
GVA (£m)	517.7	34. 5

Figure 4-3 The Economic Impact of Domestic Refurbishment (SBCR)

	Total	Per Annum
Employment (Person Years)	24, 990	1, 670
GVA (£m)	340. 2	22. 7

Ysgol Busnes Caerdydd

Capturing the Opportunity

"Sitting as it does within a highly regulated UK market for electricity and a UK national supply grid, Wales will see few price or energy security benefits flowing from local generation that might then have positive impacts on fuel poverty, competitiveness or inward investment. It would seem, for the UK regions at least, that a preponderance of natural resource, which is increasing in value, is no guarantee of increased prosperity."

> Bryan et al(2017) Regional electricity generation and employment in UK regions Regional Studies, 51:3, 414-425,

Scheme	Туре	Organisation	Location	kW Installed	Date
Cwm Clydach	Hydro	Cwmclydach Comm. Dev	Rhondda-Cynon-Taff	60	2011
Hafod-y-Porth	Hydro	National Trust	Gwynedd	100	2015
Hafod-y-Llan	Hydro	National Trust	Gwynedd	640	2013
Plas Newydd	Marine heat pump	National Trust	Anglesey	300	2014
Anafon Hydro	Hydro	Abergwyngregyn RegeneCo.	Gwynedd	270	2015
Llangattock	Hydro	Llangattock Green Valleys	Various	~60–100	2015
Taff Bargoed	Hydro	Friends of Taff Bargoed	Merthyr	100	2016
Gwrhyd Mountain Wind Farm	Wind	Aman Awel Tawe (via coop)	Neath Port Talbot	4700	2016
Rhydygwydd Salem	Wind	Carmarthenshire Energy	Carmarthen	500	2016
Abergwaun	Wind	Transition Bro Gwaun	Pembs	225	2015
Egni	Solar PV	Aman Awel Tawe (via coop)	Neat Port Talbot	120	2015
Gwent Energy	Solar PV	Gwent Energy CIC	Gwent	105	2013-2015
Gower Regeneration	Solar PV	Gower Power Coop	Swansea	1000	2018*
Narberth Swim. Pool	Biomass Heat	Narberth Energy	Pembs	200	2015
	Operational Emp	loyment Supported by Community En	ergy Projects in Wales 201	6–2035	
Techno I ogy			Estimated kW	FTE/MW	FTE Jobs/yr
Onshore Wind			6000	1.6	10
Solar PV			1200	3.3	4
In Stream Hydropower			1250	10	12. 5
Biomass, Fig	ure 5-1 Notable (>	50kW) Community & Charity	/ Energy Installatio	ons in Wales sind	ce 2010 ³
All technologies			9000+	-	30

	Renewable Electricity		Domestic Refurbishment		Total	
	Wales	SBCR	Wales	SBCR	Wales	SBCR
Gross Investment (£m)	4,640	-	1,160	-	5,800	-
Spending in Wales (£m)	1,800	-	850	-	2,650	-
Economic Impact (Employment Person-Years)	34,690	23,160	33,000	24,990	67,690	48,150
Economic Impact (Gross Value Added £m)	1,140	670	520	340	1,660	1,010
Annual Employment (FTEs)	2,310	1,545	2,200	1,670	4,510	3,215

Figure 6-1 The Economic Opportunity of the Swansea Bay City Region Energy System Vision

Conclusions

Potential for significant employment/GVA gains at Wales & City region level - here from electricity and refurbishment.

Other elements - storage, grid, vehicles etc. - more expensive but lower economic impact?

Wales has only managed to capture a small proportion of econ benefits from previous energy booms. Nothing has changed.

Scale of investment daunting - $3 \times M4$ just for these elements - but we **must** find ways to enable such investment.

THE ECONOMIC IMPACT OF ENERGY TRANSITION IN WALES

A RENEWABLE ENERGY SYSTEM FOR SWANSEA BAY CITY REGION

EMERGING FINDINGS

THANKS FOR LISTENING

Calvin Jones Welsh Economy Research Unit <u>jonesc24@cf.ac.uk</u> IWA SBCR 30-4-02018

Panel discussion:

- Chair: Emma Pinchbeck, Executive Director, Renewable UK
- Professor Stuart Irvine, Director of Centre for Solar Energy Research, Swansea University
- Johnny Gowdy, Director, Regen
- Professor Calvin Jones, Professor of Economics, Cardiff University
- Shea Buckland-Jones, Re-energising Wales Project Coordinator, IWA

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

Lunch

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

Breakout groups

What are the short or medium term opportunities towards 100% renewable energy in SBCR?

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

Feedback from breakout groups

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

A response from Swansea Bay City Region representatives

- Chair: Dr Jane Davidson, Pro Vice-Chancellor for External Engagement and Sustainability, University of Wales Trinity Saint David
- Gill Kelleher, Policy & Engagement Manager, SPECIFIC
- David Jones, Project Director, Marine Energy Wales
- Councillor Rob Stewart, Leader of Swansea Council
- Ioan Jenkins, Development Director, Tidal Lagoon Power

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

Summary

Auriol Miller, Director, IWA

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

Harnessing the potential: renewable energy in the Swansea Bay City Region

Institute of Welsh Affairs

30th April 2018 | National Waterfront Museum| Swansea

Polden · Puckham Charitable Foundation

